If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+14x-155=0
a = 2; b = 14; c = -155;
Δ = b2-4ac
Δ = 142-4·2·(-155)
Δ = 1436
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1436}=\sqrt{4*359}=\sqrt{4}*\sqrt{359}=2\sqrt{359}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{359}}{2*2}=\frac{-14-2\sqrt{359}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{359}}{2*2}=\frac{-14+2\sqrt{359}}{4} $
| 5x-3-2x=24÷7 | | 3x-47+5x-15=90 | | 5x-63+10x-27=180 | | y=(-4)(5)+22 | | 8x-10+6x-6=180 | | 2x+23=75-2x | | 4,3,25x-3=2x+9 | | x=-1/2.26 | | 3,-5,52x+x=5 | | -5,-7,75-x=12 | | -3x-15x=180 | | j/3=7 | | 28x+2+12x+8=90 | | (6*1000+0.25(y-1000))/y=2 | | (6*1000+0.25(y-1000))/y=1.01 | | 3(2k-2/3)-9=0 | | y=5/2^18+30 | | -4.3-b=9.8 | | x-(x+2)=0 | | y=5/2^6+30 | | 2j+3=24 | | j+3=24 | | j=3=24 | | 0.6x+12=0.5(x+40) | | 50-2x=x+11 | | -5(x+9)+9=-14x+9(x+3) | | 5(x+2)=9x+4-4x+6 | | 25-x=213 | | 36U00=z | | 2,5,124x+2=10 | | -5x-26=-16x+18 | | 9x-3x+8=-2x+7x |