If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+15x+13=0
a = 2; b = 15; c = +13;
Δ = b2-4ac
Δ = 152-4·2·13
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(15)-11}{2*2}=\frac{-26}{4} =-6+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(15)+11}{2*2}=\frac{-4}{4} =-1 $
| 13=1/2((2x+4)+(10x-50)) | | 10+103+12+5x=180 | | 2/3(6a+24)=9 | | 4x-3=5,2 | | 23h−15=545 | | 5(4x-2)=25 | | 3(4w+6)/5=0 | | -5x^2-3x+4=0 | | 5.1/5.7=3.2/x | | 2/3x-1/5=29/5 | | 108+5y=133 | | 8x^2-21x+65=0 | | b^2+3b+57/4=0 | | 5+-4m=15 | | k+7/10=9/10 | | 4(x+3)=6x+9-2x+3 | | 154+2x=180 | | 4x-2(1+3x)=5-3(x+2 | | 2/3x+1/2=7/2 | | 5/2x=1/x-4 | | 41-u=52 | | 7x+22=108 | | 8p+30=-2p-70 | | 5.1/3.2=5.7/x | | -10(s+5)=-52 | | 12y-5=19y-33 | | 2/3x+1/2=31/2 | | 15+0.5n=0.25n | | 6s+64=9s+61 | | 0,3x+1,4=-x+2 | | 5/6x-2=3 | | 1/8(p=24)=9 |