If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+10=0
a = 2; b = 16; c = +10;
Δ = b2-4ac
Δ = 162-4·2·10
Δ = 176
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{176}=\sqrt{16*11}=\sqrt{16}*\sqrt{11}=4\sqrt{11}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{11}}{2*2}=\frac{-16-4\sqrt{11}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{11}}{2*2}=\frac{-16+4\sqrt{11}}{4} $
| 2*w=16 | | 14x+3=165 | | 48=2l+2*11 | | (h+4)(h-3)=60 | | 1k-9k=5 | | 5x+4=10+9x+-8 | | 95/8=2+x | | 5x-6+90=3x=180 | | 2x^2+12.5x+18=0 | | 174/7=3x | | x/6=x/18+6/3 | | t^2-3.72t-17.34=0 | | 2x-2=4x+14 | | r÷8.04=1.55 | | t^2-3.7t-17.3=0 | | X+60=2x+20 | | 20x-(29x-8=0 | | x+0,6x=62 | | X=48y=3 | | x-0,6x=62 | | x-0,6=71 | | 4(x-3)=8x-5-4x | | x=2/1+49/36 | | x=2+1.36111111111 | | y=3×-6-3 | | 3x^2+42x-51=0 | | 150m-75m+43,875=45,900-150m | | -3x-7=5x+3 | | 7/3-m/8=1/24 | | 4x3÷3=7 | | -8+4w=-8 | | 200m-100m+52,525=56,100-175m |