If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+24=0
a = 2; b = 16; c = +24;
Δ = b2-4ac
Δ = 162-4·2·24
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-8}{2*2}=\frac{-24}{4} =-6 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+8}{2*2}=\frac{-8}{4} =-2 $
| p^2+11p=14 | | 8x+6+4x+38=180 | | X-1/x-2=3 | | x^2-12x+7=-0 | | 30=k+-23 | | 5^2x=1/25 | | 3y=7=y+13 | | 24n=11n+80 | | 10x-41=6x+47 | | (x=6)3=-6 | | 9z+10=1-(5-3z) | | 4x^2-1=-2x+5 | | -9x1=-80 | | 2x-4(x-4)=-6+4x-14 | | 1/2g/84=P/932 | | 1/3x+2=1/2x-5 | | 2x-178=11x+92 | | x-9=76 | | 3^4x-1=5 | | 5n-7=5n-10+3 | | 4x+5(-3x+16)=179 | | 8-3(p-5)=-2 | | 1/2(x-8)=3/2x+7 | | 68-35=3x+53 | | -23.4=r-15.7 | | 7=8+10x+20x^2 | | 4/6x-12-18/6x-12=1/2 | | 68-35+3x+53=180 | | 6x^2+18x-166=2 | | -7x-9=24 | | 5x-3(x-4)=-3+5x-9 | | 2x-7=2/3x+10 |