If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+30=0
a = 2; b = 16; c = +30;
Δ = b2-4ac
Δ = 162-4·2·30
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4}{2*2}=\frac{-12}{4} =-3 $
| 2xx3xxx=900 | | 2(5-x)=4(x-1) | | 4.3x^2+2x-10=23 | | 2v-10=-13 | | 9=5n–6 | | 2x-2=3x-2x-2+6 | | 2x*3x*x=900 | | 6=x+(-7) | | 4x+5x-2=79 | | 1/2(4x-6)+3x=5x+3 | | 3x+8x+15=90 | | 3n2-10n+8=0 | | 3(b+4)/7=-5/14 | | (y+29)+2y+40=180 | | 3/4d+4=1/4d | | 3x-8x+15=180 | | -4x-2(4x-7)=3x+4 | | 3600-3x=114 | | 3/12+x/4=24 | | 3x-8x+15=90 | | n/2+5=11 | | 0.21a=2.16 | | -36=6(v-7)-8v | | 131=4x+7 | | 20+q=65 | | 75=(12x+15) | | 20+q^=65 | | (-4)(x)=360 | | 3(2x+1)=6x+2 | | 20x+15=25x+5 | | 3x+100+5x=360 | | 6x(2+3)+4=3x+2 |