If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x+4=0
a = 2; b = 16; c = +4;
Δ = b2-4ac
Δ = 162-4·2·4
Δ = 224
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{224}=\sqrt{16*14}=\sqrt{16}*\sqrt{14}=4\sqrt{14}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-4\sqrt{14}}{2*2}=\frac{-16-4\sqrt{14}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+4\sqrt{14}}{2*2}=\frac{-16+4\sqrt{14}}{4} $
| 2x2+16x+2=0 | | 2n^2+18n-48=0 | | 5x-15+4x+6=5x | | 7x+10=Ix-2 | | 6x-7+4x+3=x | | a=278a+(a/2) | | 2n^2-18n-224=0 | | 4a+8a+a=117 | | 4y+12=42 | | x-3(x+5)=3x+16 | | h=-4.9T^2+20 | | 42=2(m+6)+m | | x/5–17=7 | | M(t)=-t^2+4t+5 | | M²-m+3=0 | | Y=-128+9.5x | | 2x(^2)-5x=0 | | X2-40x-348=0 | | 3^5x=7^x2-1 | | 7n+1=7n–6 | | 5d+1=4d+7 | | 9(a+6)=84.6 | | 9p=82.8 | | 3n+5÷2=10 | | 13x-12=12x | | 17-6x=-43 | | 5/6b-5=7×5 | | 13+8x=141 | | x+5=122x=8x-8=1 | | (4y-35)=(2y+17) | | (4y-35)°=(2y+17)° | | 6+6x=10x-2 |