If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-4=0
a = 2; b = 16; c = -4;
Δ = b2-4ac
Δ = 162-4·2·(-4)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-12\sqrt{2}}{2*2}=\frac{-16-12\sqrt{2}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+12\sqrt{2}}{2*2}=\frac{-16+12\sqrt{2}}{4} $
| y+7y-8y=0 | | 7+3u=70-3u | | 6x+15=10x | | 5x+77=-103 | | 8x+3=12x-17 | | 2x+7+4x=3x+4 | | 2x+7+4x=3x=4 | | (5x)/(2)-x=(x)/(6)-(20)/(3) | | 〖10〗^(y)×5^((2y-1))×4^(1-y)=1 | | 1(2p-1)+2=5 | | 2x+5=-3x+30 | | 2/c=5/310 | | x=270+(9/100)X | | p=2-4+8p-6p-5+20p | | 2x+45x8=45 | | (y-4)2=(2-y)3 | | 130+x/30=25/2 | | 130+x = 2530 2 | | 2x+1=1.2 | | 3x/25+3=9 | | X+2y=182 | | 8w-1/2-7w=-2/4-2/8 | | 11s-3-10s=9-7 | | 11s-3=10s-9-7 | | 5(3m-7)=10 | | 2/3x=x-62 | | (1/4)^x=2^6 | | p=5+10= | | 13x=(10x+24) | | 5x-2-2/10=12 | | x=1/8+1/6+1/4 | | 5x8=35 |