If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+16x-9=0
a = 2; b = 16; c = -9;
Δ = b2-4ac
Δ = 162-4·2·(-9)
Δ = 328
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{328}=\sqrt{4*82}=\sqrt{4}*\sqrt{82}=2\sqrt{82}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(16)-2\sqrt{82}}{2*2}=\frac{-16-2\sqrt{82}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(16)+2\sqrt{82}}{2*2}=\frac{-16+2\sqrt{82}}{4} $
| 32=4(y+5)-7y | | m2=−4m+60 | | -2x+7+3x=-10+15 | | G=5n+12 | | 9(k-2)=3(9)k | | 40=10y-2y | | −1/3y=5/2 | | 4(n+8)+2(n+4)=-36 | | Y=2(.75)^x | | 5/8x=5/24 | | 7+6(1-4r)=-107 | | 10+6x=8x+12 | | x+1/6=25/6 | | u/7-3.7=-14.9 | | 14=p/4+81/2 | | -17=3(u+5)-7u | | 4n=3n+4 | | 12y-6=9y-9 | | 175=x+37+x+30 | | B=200+100t | | 175=x+2x+37+27 | | 6.4y+1=31 | | 5d(3d-2)=0 | | 4X-12y=2;(10,-1) | | 175=x+2x+x+27 | | 2x+13+40x=180 | | Y=-1.4x+117 | | 0=-5t2+18t+48 | | D=6.2t-10.35 | | 2x+13+40=180 | | 5/2x+17=48 | | x+30=6x+20 |