If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+17x+36=0
a = 2; b = 17; c = +36;
Δ = b2-4ac
Δ = 172-4·2·36
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(17)-1}{2*2}=\frac{-18}{4} =-4+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(17)+1}{2*2}=\frac{-16}{4} =-4 $
| 134=-2x-4(-2x-20) | | 6=18/y | | 94+9x=13x+54 | | 4x+6=6x+11 | | 19848x=15600x | | 6+35x=28+18 | | 3x2-4x-2=0 | | -8+6x=-12+8x | | 3x=13=-75-8x | | x2-90x+1400=0 | | 3x+15=20−2x | | 4x+2=20-x | | 9w-117=2w+9 | | 3x-4(4.5)=9 | | 3/4x+16=28 | | (-1)(x)=4x^2+6x+12 | | (2)(x)=x^2-6x+1 | | (1/2)(x)=2x^2-3x-6 | | P(1/2)=2x^2-3x-6 | | 2(x+4)-(8-x)=5 | | 6y=-y | | x÷4-3=2 | | 42x²=50x²-20x | | x^2-110x+1500=0 | | (11x)+13=156 | | 2(x+4)-(8-×)=5 | | P(2)=x^2-6x+1 | | 3x+3=5x-4 | | x^2-160x+3000=0 | | 4(x+3)-2=34 | | X+4/9+x=6/5 | | F(4)=1/2x+9 |