If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+18=340
We move all terms to the left:
2x^2+18-(340)=0
We add all the numbers together, and all the variables
2x^2-322=0
a = 2; b = 0; c = -322;
Δ = b2-4ac
Δ = 02-4·2·(-322)
Δ = 2576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2576}=\sqrt{16*161}=\sqrt{16}*\sqrt{161}=4\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{161}}{2*2}=\frac{0-4\sqrt{161}}{4} =-\frac{4\sqrt{161}}{4} =-\sqrt{161} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{161}}{2*2}=\frac{0+4\sqrt{161}}{4} =\frac{4\sqrt{161}}{4} =\sqrt{161} $
| m4=125 | | 101+(8x+19)+(14x+16)=180 | | 7n+3=2n+48 | | 8x2+8=40 | | m2=125 | | 7x+5x+4x+8x+4x+8x=720 | | 2b=-17.94 | | 112x-564=38 | | (x-13)+(2x+1)+(x+17)=180 | | m5=55 | | 8p=4p+5p | | 11x(4x5)=(11x5)x4= | | -0.83x-0.66x=-24 | | 89+(2x+9)+5x=180 | | m5=m7 | | 89+(2x-9)+5x=180 | | 0.83x-0.66x=-24 | | 37x-1+35x=180 | | 2x-8=4(2x-7) | | Y=-3x^2+18x-23 | | 5x+8=4x+3+x | | 3/4n+7=4 | | 13=z/4 | | 42+(x-4)+2x=180 | | 55m+m=005-70 | | Y=-3x^2+17x-23 | | 11x-4x+128=11x+48 | | 13.17x+0.11=13.67x-0.12 | | 5t=5t | | 5x+(3x-21)+(5x-46)=180 | | 57+(2x-37)+2x=180 | | 57+(2x+37)+2x=180 |