If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+18x-44=0
a = 2; b = 18; c = -44;
Δ = b2-4ac
Δ = 182-4·2·(-44)
Δ = 676
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{676}=26$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(18)-26}{2*2}=\frac{-44}{4} =-11 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(18)+26}{2*2}=\frac{8}{4} =2 $
| (x+1)=x^2-5 | | -(3+x)+4(x-6)=-4 | | -13=r/8+8 | | p^2=22 | | 2x+7×=18 | | 6x+27=7x−9 | | -10*4^(a+5)=-71 | | 56-8p-8=16p+32 | | 4x-10+-10+12x=140 | | 8n-5=2(4n-5) | | 6x+27=7x+-9 | | -10*4^a+5=-71 | | 11k+18=20k-27 | | X+0.03x=587000 | | X/3x+7=8/16 | | 3=3+a/1 | | 8n+5+5n-7=37 | | 4(2p+3)=6p-5 | | 4t+5+3t=61 | | r+11r+8r=24 | | 85=2x+10 | | 3-8d=19 | | -(1+2x)=-9-x | | 15-m=-9 | | x√8=66 | | 4x-1=23-4 | | 4n+7n=66 | | 6r-11+6r=11 | | 3/4x=7.3+5/4x+21.3 | | 6r-11-6r=11 | | 10x+5x+85=17x+11 | | 4x-1=23-√16 |