If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+19x^2=382
We move all terms to the left:
2x^2+19x^2-(382)=0
We add all the numbers together, and all the variables
21x^2-382=0
a = 21; b = 0; c = -382;
Δ = b2-4ac
Δ = 02-4·21·(-382)
Δ = 32088
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{32088}=\sqrt{4*8022}=\sqrt{4}*\sqrt{8022}=2\sqrt{8022}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-2\sqrt{8022}}{2*21}=\frac{0-2\sqrt{8022}}{42} =-\frac{2\sqrt{8022}}{42} =-\frac{\sqrt{8022}}{21} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+2\sqrt{8022}}{2*21}=\frac{0+2\sqrt{8022}}{42} =\frac{2\sqrt{8022}}{42} =\frac{\sqrt{8022}}{21} $
| 5x-24=3x-24 | | 11x-15=6x+10 | | 7y-25=2y | | 7+b=-4 | | 9(0)-2y=18 | | -5.2+57.9=15.9+18x | | X2+4x3=0 | | 2x-8/3=-10 | | 6x+5x+3=7x-42+77 | | 4x+1=7/15 | | 2m2+m-12=0 | | 100+40m=340 | | 9s=2s+1 | | H=6d-2 | | 2x+60=60+1x | | Y=7x+54 | | 2x+74=x | | 8x+1.50=18.50 | | 9x2+7x-56=0 | | 3x^2+2x+(-2)=0 | | 5(x-2)=2x-2-13 | | 3x+5/4=7x-4/3 | | 5x+25+1x+17=180 | | 4(x^2)+26(x)-12=0 | | 0.2222n-5=2+0.5556n | | -17(-4)+y=77 | | -4+y=77 | | -17(-4)-y=77 | | 3.4c+2=-13 | | x^2-3x20=0 | | -(4-3x)/2=5x-6 | | x-1.06x=0 |