If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+1=33
We move all terms to the left:
2x^2+1-(33)=0
We add all the numbers together, and all the variables
2x^2-32=0
a = 2; b = 0; c = -32;
Δ = b2-4ac
Δ = 02-4·2·(-32)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16}{2*2}=\frac{-16}{4} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16}{2*2}=\frac{16}{4} =4 $
| 78=165-v | | 2x^2-75x-1000=0 | | 3x-(3+x)=33 | | 169-w=257 | | -4u+10u−13u=7 | | 2w+2(4w+6)=132 | | 2n+8−8n=24−11n+5 | | 56+5x-1=90 | | n+8+5n=50 | | 11+2w+17=52 | | 7u+16-9=56 | | 200-7x=13x | | 5=3u+2u | | 16u+-7u+14u+-13u=20 | | 10x+9-11-x=-2(2x+4-3(2x-2) | | x+5x-17=49 | | 5n-7=4n+5 | | 3x+2+7=33 | | 3x+2x+19=59 | | 3(3x+5)=7(x+4) | | 8q-17=63 | | x+10=x+14=22 | | 1/2x-8/4=4/2 | | 4x+25=141 | | 15m-11m+m-m-m=6 | | 23+k/40=53 | | 1-k=-7-2k | | -10u+-20u+-14u=-20 | | 3x-1=23-x+1 | | 2x-12=16+20x | | 14+d/10=25 | | 12-8x=-20 |