If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x+44=0
a = 2; b = 20; c = +44;
Δ = b2-4ac
Δ = 202-4·2·44
Δ = 48
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{48}=\sqrt{16*3}=\sqrt{16}*\sqrt{3}=4\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{3}}{2*2}=\frac{-20-4\sqrt{3}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{3}}{2*2}=\frac{-20+4\sqrt{3}}{4} $
| 4x+2=18+8 | | 25x^2+100x=-10 | | 6n+4-n=14 | | 2n+1=-8n+11 | | Y=0.3x-69 | | 2/3*4/5=1/3^m | | -14+(-4y)+3y=14 | | -2(7+(-2y))+3y=14 | | -2.3=j/7 | | -4v-6v=-8-6v | | 4x+5=7+20 | | 3x-9+2=6 | | s=500-10(28)/72 | | C/2+5x=-2 | | -2b+8=2 | | 6x+8=10x+-4 | | 0=6r^2-4r+6 | | 5/8m=-10 | | 5b+8=7b+2 | | j-0.2=3.8 | | 2p^2-2p+3=0 | | x^2-16x+2.5=0 | | 18t=27+t | | 11/3c=3/4 | | s=500-10(28/72) | | 2x+12=5+9 | | 8m-12=42 | | s=500-10*28/72 | | 3(2x-5)=6x-2-13 | | 2/4x=4 | | 3x2-8x=0 | | x2-8x+41=0 |