If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x+50=0
a = 2; b = 20; c = +50;
Δ = b2-4ac
Δ = 202-4·2·50
Δ = 0
Delta is equal to zero, so there is only one solution to the equation
Stosujemy wzór:$x=\frac{-b}{2a}=\frac{-20}{4}=-5$
| 20/5=x/8 | | 12x+300=270 | | 2(n-13)=10 | | 6x=2412 /19 | | X2+17x+72=0 | | 3x-x=20+3 | | 4(3x+2)−7x= | | (a-700)7=1057 | | 6x=2412 19 | | 5.61x+21.95=409.04 | | (a*12)+32=180 | | -4x-13=6x-7 | | (2x^2)-19x=-39 | | 12a-9=8a+14 | | x+3x=18+12-2 | | 5x+14-8x=19-15x+12x-5 | | 4/5x=-28 | | 0=-4.9t^2+14.48t-5.3 | | 4x+20=x-45 | | 2x+1=9.75 | | -17=4w+19 | | 1/(2-7i)=0 | | 150+15x=180 | | 6x+16=4x-48 | | A=6a | | 23=3x/4+17 | | -8x^2-36x-36=-5x^2-21x-18 | | (5/3x)-(1/9)=1/x | | 36-f-4=3f-4 | | 2x+200=180 | | (2/3+15i)(1/5+15i)=0 | | 4x^2+64x+167=2x^2+42x+107 |