If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x-400=0
a = 2; b = 20; c = -400;
Δ = b2-4ac
Δ = 202-4·2·(-400)
Δ = 3600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{3600}=60$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-60}{2*2}=\frac{-80}{4} =-20 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+60}{2*2}=\frac{40}{4} =10 $
| X2+11x=-30 | | 3y-8=4y-5 | | 5x2+11x+2=0 | | 31-2+x=3x | | 5x2-10x=120 | | 7y+1=8y-2y | | 6y+2y=7y-9 | | 8x^2-6x=8 | | X+12=18x-6 | | -4-5x=8-(4x-3) | | 9+(-14)=7x-5-6x | | -2x+6+3x=-2+21 | | X+8/2x=5 | | -3(m-20=12 | | 18-(6x-4)=(-2x-5)+25 | | y+4.8=-9.9-4.6 | | x-0.3=3.4 | | (x+27)+8=(x+8) | | -23+10=m-1 | | 4x-1=x=7 | | y-4=-2+3 | | 3^{x+1}=5^x | | (x+6)^2-x^2=96 | | 60-15x=24-6x | | 3^(2x-1)+9=27 | | 10(s-6)=11 | | 4x+10+x2=52 | | x^2+25(21/x)^2=274 | | x^2+5(21/x)^2=274 | | 0=-3x+8x | | 87+2x=+11x | | 0=-2v-4v |