If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+20x=10
We move all terms to the left:
2x^2+20x-(10)=0
a = 2; b = 20; c = -10;
Δ = b2-4ac
Δ = 202-4·2·(-10)
Δ = 480
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{480}=\sqrt{16*30}=\sqrt{16}*\sqrt{30}=4\sqrt{30}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(20)-4\sqrt{30}}{2*2}=\frac{-20-4\sqrt{30}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(20)+4\sqrt{30}}{2*2}=\frac{-20+4\sqrt{30}}{4} $
| 16x+6=50.8 | | 6x+16=50.8 | | (2x+4)+(3x+3)=19 | | 34=−6e−35 | | 3x-33=2x+17 | | 20x=4x+45+1x | | -28/d7,d=-4 | | 3-33=2x+17 | | 2(b-5)+3(b-2)=8=7(b-4) | | 4+2r=6r+16 | | 3-33+2x+17=180 | | 3-+33+2x+17=180 | | 3x+33+2x+17=180 | | 6p−12=24p=4;p=6;p=8 | | -1n=16+n | | 2x2+20x+44=0 | | 4x+2=18+8 | | 25x^2+100x=-10 | | 6n+4-n=14 | | 2n+1=-8n+11 | | Y=0.3x-69 | | 2/3*4/5=1/3^m | | -14+(-4y)+3y=14 | | -2(7+(-2y))+3y=14 | | -2.3=j/7 | | -4v-6v=-8-6v | | 4x+5=7+20 | | 3x-9+2=6 | | s=500-10(28)/72 | | C/2+5x=-2 | | -2b+8=2 | | 6x+8=10x+-4 |