If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+26x+84=0
a = 2; b = 26; c = +84;
Δ = b2-4ac
Δ = 262-4·2·84
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(26)-2}{2*2}=\frac{-28}{4} =-7 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(26)+2}{2*2}=\frac{-24}{4} =-6 $
| 10p-10p+5p=20 | | 7x-4(1+5x)=28-5x | | 64=^2x+3=2 | | 3(x+4)+2(2x−3)=27 | | -2x+6=10x+30 | | -8=60+b | | 7a-6a=11 | | 1x+2x-4-(-1x)=4 | | 3(x+12)=5x+36-2x | | 14z-6=14 | | X+3+2x-1+60+60+60=180 | | 3r-2r=18 | | 5(x+4)=5x-20 | | -5=-5(x+9) | | 4(x+3)2-11=89 | | 2(2m-5)-(6m+11)=33 | | b+13=-5b/3 | | x^2+40+3x+10=180 | | 3x-17=-3x+37 | | (3x+9)=6(2x-5)=7x | | -8=4×15+b | | 9(x)-12=30 | | 49-9=-4z-4z | | 2x(x+4)=(x-3)² | | -5(-3-n)=10 | | -2(-9w+8)-8w=2(w-9) | | a. | | 12m+112=1000 | | (2)2x+10=44 | | 24=3x6 | | 7x(8+1)=(7x)+(7x) | | 9x+10+11x=180 |