If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-393=0
a = 2; b = 2; c = -393;
Δ = b2-4ac
Δ = 22-4·2·(-393)
Δ = 3148
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3148}=\sqrt{4*787}=\sqrt{4}*\sqrt{787}=2\sqrt{787}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{787}}{2*2}=\frac{-2-2\sqrt{787}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{787}}{2*2}=\frac{-2+2\sqrt{787}}{4} $
| 2n+7=12-3n | | 2x+16=x-8 | | 14g+15.04=-6.7g-6.08+19.6g | | -18.06+11.8b=1.96+19.5b | | 2n+7=5n-3 | | -17h+10=3h-19h-10 | | -14j+2=-15j-7 | | -1+9b=11b-17 | | 7f=8.1f+12.98 | | 5-12p=5+17p+7p | | -6k=-7k+11 | | -7.59-6.9q=16.56-5.4q+1.2 | | 3n-5=4n-7 | | -19w+19=-9w+9-12w | | x×12=8×13 | | w/4-14=2 | | 46=u/3+16 | | P(x)=120x-2x | | -4-3z=19z+18 | | -5f+3+14f=11f+11 | | -18.54+4.4n-17.31=18.95+8.4n | | 5n-6=2n-15 | | -15v=-9-16v | | 5x-5=1x+15 | | z=3-1 | | 4n+5=2n-11 | | 10+2s=-10+s | | -3x–1=-5x-7 | | -10.24+12.8v=14v-9.28 | | 11y+7=12y-13 | | 1. -3x+2=5x-6 | | 8x+20-11x-31=180 |