If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+2x-720=0
a = 2; b = 2; c = -720;
Δ = b2-4ac
Δ = 22-4·2·(-720)
Δ = 5764
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{5764}=\sqrt{4*1441}=\sqrt{4}*\sqrt{1441}=2\sqrt{1441}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-2\sqrt{1441}}{2*2}=\frac{-2-2\sqrt{1441}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+2\sqrt{1441}}{2*2}=\frac{-2+2\sqrt{1441}}{4} $
| 49+14i=27i-3 | | 3.9-x/4=1.8 | | 12*x/3=160 | | 61-2x=71-3x | | 5w+60=120 | | x9(x+10)=−99 | | 12i+18=20i+10 | | 12i+18=20 | | v=0.75(4.20) | | 25=u | | 9-8u=41 | | 4.20=0.75s | | -2.6x+1.3=11.7 | | 4x^+7x-36=0 | | -77=-7(u+8) | | 3(2-x)=2x-3 | | -17=5x-17=8 | | 3x+8-6x=-5x-10+6-2x | | .75=-0.2x+1 | | x-85+941=650 | | 5i-20=3i+6 | | 1/2(6x+8-x=2x+8 | | 2.6x-12.56=5.9 | | (X+6)/2=4-(x+4)/5 | | -8(t+1)-t-11=-9(t-5)+26 | | 2a-4=16a-3 | | 5a-3=6a+2(3+2a) | | 21x-6.88=5.3 | | 2i+2=3i-15 | | 9m-4=9 | | 21=(3x)(5+2) | | 4-3y=-17 |