If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+32x=72
We move all terms to the left:
2x^2+32x-(72)=0
a = 2; b = 32; c = -72;
Δ = b2-4ac
Δ = 322-4·2·(-72)
Δ = 1600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1600}=40$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(32)-40}{2*2}=\frac{-72}{4} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(32)+40}{2*2}=\frac{8}{4} =2 $
| 8y-36=-2(y+8) | | 3v-14=19 | | 4-6x=87 | | 4x-6=6-4 | | 14k+k-12k+3=9 | | 5v+-6=14 | | 8x*4=80 | | 133b+5=8 | | -2p+1=7 | | 2x-12+6x=-4 | | 133b+8=65 | | 5b-12=4/ | | 12w-2w-8w=18 | | 4(y-6)-7=-7(-2y+7)-6y | | 48000=x-(.2x) | | -36=-6y+3(y-8) | | 3x-10=8+2 | | 21=-3+8h | | -36=-6y+3(y-8 | | 5s+3/2=9/4 | | 3^x-2=27^x | | X;6(5-3x)=7(10-2x) | | t–3(4–t)= | | 7x+19=82 | | 23=5m+8 | | 5u+4u-5u-4=16 | | 7=m/4+5 | | 3x+4=2(2+x)+x | | 2x+10=3- | | -4c(-c-16)=-4c-16 | | 7=m)4+5 | | -(x+2)-2x=(x+1) |