If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+34x+144=0
a = 2; b = 34; c = +144;
Δ = b2-4ac
Δ = 342-4·2·144
Δ = 4
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4}=2$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(34)-2}{2*2}=\frac{-36}{4} =-9 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(34)+2}{2*2}=\frac{-32}{4} =-8 $
| 2x2-6x=0 | | 12-6w+3=7w-2+0 | | x^2-8x+16=10-x | | -7+2y=10 | | 1/x+1/x+2=28/195 | | 8y+16=6y-2 | | 75x=(12)(5)+(2^2)x | | -3(3-x)=-2x+11 | | 9b+4(b+1)=17 | | -13n+14=-11n-18 | | -14=-3x^2-18x | | 4(u+3)=3(3u-7) | | −2(r+5)=−27 | | 3(2x-5)=4x+11 | | 37+4y-14=13y-12-2y | | 5x+4+2=7x+18 | | 1/2x=3/2x+4 | | 1=1-1k-7k | | 5+8m=37 | | 7y+36=3y | | 2(-7+x)=4-x | | 4(x+3)-4x=12 | | 11-8g=-3g-19 | | 5(4+x)=1/2(40+10x) | | -16+34=-3x-24 | | 7/x+2/x=-14 | | 7/18=x/36 | | x/x-4=16/x-4 | | -2x2+200=88 | | 42.64=8g+3.68 | | -9x+81-4=77 | | 9/x=10/3x+5 |