If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+35=17x
We move all terms to the left:
2x^2+35-(17x)=0
a = 2; b = -17; c = +35;
Δ = b2-4ac
Δ = -172-4·2·35
Δ = 9
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{9}=3$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-17)-3}{2*2}=\frac{14}{4} =3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-17)+3}{2*2}=\frac{20}{4} =5 $
| 6m-12=-24 | | 13x+7(-3x-1=-63 | | x+7-1=4x | | 32=(x-1) | | 9-6×=x+2 | | 2/x-4=6x | | 5(t+40)=-t-40 | | (8x+5)+(5x-1)+95=180 | | 4+x+10=18 | | 4x=1.44 | | 9+2x=-3-4x | | 6(x+9)=24 | | 5(2m-3)=45 | | 5.8(x-1.5)=32.48 | | 6.8+y=-90 | | -4s+18=-14 | | 6+x+5=14 | | 6(x=9)=24 | | 62+50+x+53=180 | | 7k-2=-9 | | 10.7+y=-1.56 | | 2+3+x=6 | | 2h=(4h-5) | | 3/4*j=5/9 | | x+(x-4)+(x+4)=180 | | t/18+5=9 | | 4.3x-6.6+9x=9.3x-20.2 | | 5.06+x=870 | | 7+x+9=21 | | 4(2x-3)=-8x+4 | | -24=-4+5x | | (3/4)x+5-(1/2)x=3 |