If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+36x=0
a = 2; b = 36; c = 0;
Δ = b2-4ac
Δ = 362-4·2·0
Δ = 1296
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1296}=36$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(36)-36}{2*2}=\frac{-72}{4} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(36)+36}{2*2}=\frac{0}{4} =0 $
| 4(8m+1)-6(-3+2m)=7m+2m | | 5x-7=143 | | 3x+15=30−2x | | (x+9)/3=18 | | Mx=113 | | v-3=1 | | 5h−6=4h | | 14-2u=14−2u | | x=4x+9-29 | | 6x-19+3x+7=180 | | 65x=66x-2 | | 7z+3=31 | | C=0.05x+11 | | 11q=110 | | 10x-9=2x-1 | | 3/5x-9=-27 | | 4t+12=9t | | f÷7=8 | | xx6=4 | | 2x+12=6x-4x+12 | | 6y+1=7y+8 | | 2r=r−6 | | 8p+3=83 | | 6–2r=10 | | X=-4x=-9 | | 6–-2r=10 | | 0.01x=2 | | 6x-3=3(4x+5)-6x | | 13n-5=10n-2 | | 0.011111x=2 | | 6g=–6+5g | | d/2+-6=-10 |