If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3=51
We move all terms to the left:
2x^2+3-(51)=0
We add all the numbers together, and all the variables
2x^2-48=0
a = 2; b = 0; c = -48;
Δ = b2-4ac
Δ = 02-4·2·(-48)
Δ = 384
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{384}=\sqrt{64*6}=\sqrt{64}*\sqrt{6}=8\sqrt{6}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-8\sqrt{6}}{2*2}=\frac{0-8\sqrt{6}}{4} =-\frac{8\sqrt{6}}{4} =-2\sqrt{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+8\sqrt{6}}{2*2}=\frac{0+8\sqrt{6}}{4} =\frac{8\sqrt{6}}{4} =2\sqrt{6} $
| 5z+3*2+4z*2=204 | | 4=2(x+5)-x | | 5m^2+m-22=0 | | 0.4x+0.20x=87 | | -8-4x=-29 | | 1.6x+0.8=1.4 | | 8+7d=35 | | 4x^2-9=2x | | 60=2x+x/2 | | 5z+3=204 | | 0.35(x+36)=36 | | 7d+8=35 | | n-8=33 | | 2(x+5)(2x+9)=0 | | m+m-5/8=25 | | 40=2x+x/2 | | 2r^2+7r+3=0 | | m+m−54=25 | | -2=w/5+8 | | 10y=2y+32 | | 7(b+8)=-70 | | -12r–-16r+-19r–-7=-8 | | 0+3y+12=5y+20 | | 13x-7=5(3x-2)=11 | | 3(k−6)=153(k-6)=15 | | 11(2b+3)+15=17(b-5) | | -5/3x+5/3=-35/18 | | -6(-x-2)=8(x-2+ | | 0=5(c-1) | | 9y-6y-y=16 | | -6(-x-2)=8(x-2) | | -2x-2-3x=7 |