If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-14=0
a = 2; b = 3; c = -14;
Δ = b2-4ac
Δ = 32-4·2·(-14)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-11}{2*2}=\frac{-14}{4} =-3+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+11}{2*2}=\frac{8}{4} =2 $
| 6v+48=-6(v-2) | | 25+x2+10x=0 | | -4(x-8)=-9x+12 | | r2=7r | | 2x2+7x-22=0 | | g/2+7=21 | | 3(x-2)=-2(8+x) | | c2=4 | | -(2x+3)=2-(x-7) | | 66-x=58 | | 1.2x=-5.4 | | 8x2+24x=0 | | 5x+3=9x−21 | | 4y-5+2y=19 | | 15*5+6-x=58 | | 4u+17=45 | | 9x2-9=0 | | x-45=36 | | t2-10t+25=0 | | 7t=46 | | 3|8+d|-1=29 | | 2/3n=-16 | | 10n-5÷51=2n-1 | | z2+8z=-15 | | (4/3)-4y=4 | | 13+a=15 | | 0.18(y-6)+0.10y=0.08y-1.8 | | 13s^2+4s-9=0 | | x2=23 | | 3(5x-3)=-16 | | -7(2+3x)=182 | | 4|2-9y|=28 |