If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-160=0
a = 2; b = 3; c = -160;
Δ = b2-4ac
Δ = 32-4·2·(-160)
Δ = 1289
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1289}}{2*2}=\frac{-3-\sqrt{1289}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1289}}{2*2}=\frac{-3+\sqrt{1289}}{4} $
| (4q+1)^2=12 | | X/y=3+2 | | X/y=3+@ | | 3a2+42a+72=0 | | 21x÷15=x-12 | | -5(p-2)=6p+43 | | 2x+4-6x=8 | | 7m-35=3m+5 | | 4p-3=13(p=1 | | 6x²-12x-6=0 | | X/2+3x+X/2+8x=80 | | .9(x)=844 | | 2x+4x+6x=190 | | 3x+9x+30=90 | | -8u=-4+44 | | 2(p+5)=15p-81 | | 12x+13=-36-5x | | 2(p+5)=15-81 | | ×-2x+14=-16 | | ×-2x+12=-12 | | |x+1|+|x+3|=2 | | -2(20z+1)+3=-10(4z-3)-29 | | 3c+1=2c+6 | | |4x-2|-3=3 | | X+6=4(x+3) | | 5(2x+5)+5(2x+2)+2=20x+37 | | 21x÷100-20x÷100=40 | | 1/6x2=1/2x+7/6x2 | | x+13+12x-4=3x+9 | | 4r/3+16=28 | | 2(12+x)=x+28 | | 2(12+x)=x+18 |