If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-161=0
a = 2; b = 3; c = -161;
Δ = b2-4ac
Δ = 32-4·2·(-161)
Δ = 1297
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{1297}}{2*2}=\frac{-3-\sqrt{1297}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{1297}}{2*2}=\frac{-3+\sqrt{1297}}{4} $
| -5.1-4x-3.5-2x=-5x-0.3 | | 72+c=19 | | -2/7b=4 | | -(x-8)=-5 | | -2/3b=8 | | 2(5x=6)(23x+3/5x+6)=2(5x+6)(1/2) | | 5x+7^2=90 | | -5.8-5z-3.9-22=-6z+2.2 | | 4x-8x=-5-5x | | -5.3-6z-6.2-2z=-7z-3.2 | | -16=r÷10 | | -12h=-5h+9 | | 1/2(3x-15)=4 | | ((x+2)/4)-((x-1)/3)=2 | | -16=x÷10 | | -4.9-6x-7.1-2x=-7x-6.1 | | -7(v-8)=-7 | | x-(5x-3)-3(5x+10)=100 | | (x+2)/4-(x-1)/3=2 | | x+5,41=3,81 | | -3.5-6y-1.9-2y=-7y+4.8 | | 1+5n=-3-4n-2n-1 | | 5/2r=8 | | −6(x+3)−8=16 | | 3=5k-8k | | x-(5x-3)-3(5x+10)=0 | | 7f=2.1 | | x2+6x+34=0 | | 3,24x-2,58=2,9x+5 | | (2x−7)(4x+3)=112 | | -56=-4c | | 9(5+w)=8(w-6) |