If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-20=0
a = 2; b = 3; c = -20;
Δ = b2-4ac
Δ = 32-4·2·(-20)
Δ = 169
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{169}=13$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-13}{2*2}=\frac{-16}{4} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+13}{2*2}=\frac{10}{4} =2+1/2 $
| 4x+17+3x=5x+25x | | 5x-(1x-13)-45=0 | | 3x^2+39x=90 | | 1/2m+1/6=3/2m-11/6 | | 504=n(n^2-1) | | x/3-12=-4 | | (9x-8)^2/7x+6=(-2x+14)^2/7x+6 | | 11y-9-6y=6y-3 | | 14=-x+6 | | x+1/4=25/4-2x | | 23=6+6y | | 23=2x+30 | | 13x+8=26+4x | | 2x-13=7x+3 | | 6^x=42 | | 2x^2+80x+200=0 | | 20X-36+2x=3x17 | | 6/x-5=x/2-7 | | 2-11x=32+x | | x/6-5-7=x/2 | | 8y=5y-6 | | 17x^2+32x-16=0 | | 6u-12u-u-16u=18 | | 5/2x+1/2x=2x+10/2+7/2x | | 14X+3x-X=4x-3x | | 13a+9=2 | | 7/2x+1/2x=2x+9/2+7/2x | | 6+5x=4-3x | | (-5x+4)^3=4/5 | | 10u+8=14 | | 8-4x=6-3x | | 4x^2-33x+65=0 |