If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x-90=0
a = 2; b = 3; c = -90;
Δ = b2-4ac
Δ = 32-4·2·(-90)
Δ = 729
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{729}=27$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-27}{2*2}=\frac{-30}{4} =-7+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+27}{2*2}=\frac{24}{4} =6 $
| -2p-3p=60 | | 3(+3y)=12 | | 15x-4=9x+1 | | 0.5(9x-2)=9x | | 15x-(x-3)=2(x-1)-5(2x-1) | | 2(x-7)^2=36 | | a+32=90 | | -11x-8=25x-6(6x-8) | | 3x+15=-4x-16 | | -3(2x-3)+4=2x-1-5(2x-1) | | 0=-3/4x+9 | | -5d=-40 | | -10=k/6 | | -3(8s-4)=-17+6s | | x+x+14-6=90 | | -6h=-72 | | 4=2.5/t | | -84=-7a | | -4=1+h | | 12x+18=9×+12 | | 2x+1=5.75 | | 12x+18=9×+22 | | 5/h =5.1 | | 5-5v=60 | | 2+y=5.75. | | 2/x=1/9 | | 26=-5h+1 | | 10=5+m/3 | | -4(-3t+1)+7t=5t-4 | | 9=6+f | | -7=-d/2-3 | | (3x)-5=55 |