If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+3x=4
We move all terms to the left:
2x^2+3x-(4)=0
a = 2; b = 3; c = -4;
Δ = b2-4ac
Δ = 32-4·2·(-4)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{41}}{2*2}=\frac{-3-\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{41}}{2*2}=\frac{-3+\sqrt{41}}{4} $
| -3(7n-1)=-6(n-3) | | -3(1/2y-1)=9 | | 41-7y=16 | | 3x2–2x–5=0 | | 5(m+5)=4(m+4) | | 5(m+5)=4(m+4 | | x2–4=5. | | 5(x-4)=2(x+10) | | 2x2+6x=–3 | | 11=5−3y | | x2–4=5 | | -1+-3z=2 | | -6n+4=-5n-4 | | 2(x+3)-7x=23-5(x+3x) | | w+37=45 | | 6(5x−2)=48 | | 2q−9=1 | | 54=9+4y | | -16+(-k)=-7 | | 4(6x+1)=25+3(2x-1) | | 38=45-u | | 9+2m=17 | | 19=r/4+17 | | 9=5y-16 | | 19 = r4+ 17 | | 6y^2-37y+22=0 | | 9x+14=14x-1 | | 9=27-8y | | s-5=$25.46 | | 6(5x−2)=48 | | x^2+10=2x^2+3x | | 6d−2/11 =2d−2/13 |