If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x-7000=0
a = 2; b = 40; c = -7000;
Δ = b2-4ac
Δ = 402-4·2·(-7000)
Δ = 57600
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{57600}=240$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-240}{2*2}=\frac{-280}{4} =-70 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+240}{2*2}=\frac{200}{4} =50 $
| T^2+80t=900 | | 6000=p+p(4.25)(713) | | (13x+3)+(9x+1)=0 | | 65=7s-5 | | -70=7(u-9) | | 80x-560=1520 | | 0.2=x5 | | 8x-3+9x=2x+5-4x | | 4x+7=-7x-8 | | 4x+7=-7-8 | | F(x)=4.3x+38 | | 7/1x+1/3x=2+5/3x | | b2-5b=-6 | | 8x+1x=-x-1 | | x(x+12)=10x+8 | | 4y+86=-4 | | -2n+6+6n=1+5n+3 | | X=1200+15y | | 11w=16 | | 4/3w-3/5=-1/2 | | V=4/3(3.14159)(60-1.5t)^3 | | x^2-150x=10000 | | 4x*12x=320 | | 45=3n+10-8n | | 9y+4-3y=-32 | | 21+x=77 | | 81+x=107 | | 25000(1+.045/4)^8-25000=x | | 15.4x-0.5=5.4x+0.75 | | 11-m=17 | | 29=-x+20 | | -2(u+1)+5u=3((u+1)-2 |