If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+40x=80
We move all terms to the left:
2x^2+40x-(80)=0
a = 2; b = 40; c = -80;
Δ = b2-4ac
Δ = 402-4·2·(-80)
Δ = 2240
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{2240}=\sqrt{64*35}=\sqrt{64}*\sqrt{35}=8\sqrt{35}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(40)-8\sqrt{35}}{2*2}=\frac{-40-8\sqrt{35}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(40)+8\sqrt{35}}{2*2}=\frac{-40+8\sqrt{35}}{4} $
| 2(4x+1)=2x+13 | | 3(p-2)=-10 | | 2x²+40x=80 | | 40+6x+16=12x+2 | | -5(n+1)=7(n+3) | | 2(x+3)-3(x+6)=-x-12 | | 5^x-12=25 | | C(x)=0.0001x3−0.09x2+20x+1200. | | 34-8x=14+12x | | 116-y=26 | | -√3x2+6x=0 | | -√3x^2+6x=0 | | -8u=-7u-6 | | 9+5w=6w+2 | | x²=16x=15=0 | | h=-4.9^2+24.5+1 | | x2+16x+15=0 | | 3(-4v-1)=-12v-8 | | -5(2a-7)=-(1+a) | | -5(2a-7)=-(1-a) | | 10-9b=10b | | R(x)=x-0.01x2 | | 3(3n+5)=3(9-n) | | -2k=-3-k | | 7y-12=5y+24 | | -9=y/3-3 | | -2j=7-j | | 5(x+5)=8(2x-5) | | 3/2(x)=9 | | 8-7v=-8v | | 9x+-37=17 | | 6n+5=3n+10 |