If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+45=63
We move all terms to the left:
2x^2+45-(63)=0
We add all the numbers together, and all the variables
2x^2-18=0
a = 2; b = 0; c = -18;
Δ = b2-4ac
Δ = 02-4·2·(-18)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12}{2*2}=\frac{12}{4} =3 $
| 4+14/y=25-15/y | | y/3+6=-1/2 | | (x-1)(x-8)(x+5)=-360 | | x+1=8(0,5x-1) | | 0,5+x=4(2x+0,125) | | 9^(3x-1)=27^(3x+1) | | 3(x+4)+8=62 | | x+0,5x+20=50 | | F(-2)=6x^2+3x+5 | | F(-4)=6x^2+3x+5 | | 9y²-12+2=0 | | n12/6=4/n | | 2X+2y+160=360° | | y+-3y+11=20 | | 4r^-64r^2=0 | | -5n-10=20 | | 2+x=2(3x+1)-2 | | 2(2x+2)-3=3-2x | | 4(4x+1)+3=1+x | | 3(x+2)-1=2+2x | | 4(x-5)+1=3x-(2x+1) | | 2(3x+5)+5=3x-(x+5) | | 3x+4+3x+4+x+4+x+4=x | | 5y^2+15y+9=29 | | 2y×11=17 | | 4y+9=2 | | 8p-3;=-2 | | n-31-4=2 | | 6x-9+96=180 | | 450+40m=975-45.5m-19.55m | | 4z^2+13=0 | | -5y-6y=-21 |