If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+45x+72=0
a = 2; b = 45; c = +72;
Δ = b2-4ac
Δ = 452-4·2·72
Δ = 1449
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1449}=\sqrt{9*161}=\sqrt{9}*\sqrt{161}=3\sqrt{161}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(45)-3\sqrt{161}}{2*2}=\frac{-45-3\sqrt{161}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(45)+3\sqrt{161}}{2*2}=\frac{-45+3\sqrt{161}}{4} $
| ‐7x+2=‐12 | | (6c-5)=4(7c-8)+3 | | 5x−3(x−3)=−6+6x | | 18+-7=x | | -1=0.75x+8 | | 11=2(8+3x)=49 | | 4×(3x-2)=28 | | -3(7x-1)=-144 | | 10+15=7x-2x | | 2x+5+6x=33 | | -66=-2x-4(-6x-44) | | 7x+12=x^2 | | 46=14+4x | | -10.8b-4.6-6.81=1.5b+13.47 | | 356=6x-7(8x-8) | | (2x+4)(4x)(x)=360 | | –8(2n+10)=32 | | -1=-10x+1 | | 10+(-x)=19-(-x) | | -7.4m+15=-8.9m | | -5(7-3x)+5=90 | | 15=y+6 | | -7.4m+15=-8.9 | | 3(–x+6)=39 | | -8p+1=-7-10p | | 35n/35=35/700 | | -(-4x+5)+6x=-85 | | -15m+34=12m | | 9x+56=4+11x | | 14+5x-4x=24 | | -32=2(u-4)-8u | | -7z=12-6z |