If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4=24
We move all terms to the left:
2x^2+4-(24)=0
We add all the numbers together, and all the variables
2x^2-20=0
a = 2; b = 0; c = -20;
Δ = b2-4ac
Δ = 02-4·2·(-20)
Δ = 160
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{160}=\sqrt{16*10}=\sqrt{16}*\sqrt{10}=4\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-4\sqrt{10}}{2*2}=\frac{0-4\sqrt{10}}{4} =-\frac{4\sqrt{10}}{4} =-\sqrt{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+4\sqrt{10}}{2*2}=\frac{0+4\sqrt{10}}{4} =\frac{4\sqrt{10}}{4} =\sqrt{10} $
| 57=-12+3z | | 2m-12=-11 | | 3x+156=2x+102 | | (4x+3)/7=6 | | 9n-2.5=60.5 | | 4x2+6=46 | | 2/5m=1/2 | | X^2+24x=-46 | | x^2+(2.6)x+3.6=0 | | (x+8)(5x-2)=0 | | 10x2−5=35 | | 4x^2-48x=144 | | 5(-3-x)=2(3-x)=14 | | 4x/10-8=6 | | 0.9-5x=-0.2 | | 4x-35=-11 | | (7x-20)+(4x)+90=180 | | 8x+14+2X+4=180 | | 210-210=4x | | 9g−2g=14 | | 4x2+3=27 | | 20-10n=5n-20 | | 2(x-9/2)=2x | | 68x^2+13x=5 | | 1.2x+5=8.6 | | 3y/4+13=40 | | 3–4x=5(x-3) | | (6-p)^2=47 | | 125+4r=189 | | 12=2+h119 | | 1/2(9x+4)+7x=5x+8 | | 9=11t |