If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x+0=0
We add all the numbers together, and all the variables
2x^2+4x=0
a = 2; b = 4; c = 0;
Δ = b2-4ac
Δ = 42-4·2·0
Δ = 16
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{16}=4$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4}{2*2}=\frac{-8}{4} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4}{2*2}=\frac{0}{4} =0 $
| w²+15w=225 | | 3x+2x^2=44 | | 22+c=29 | | 4-7y=-31 | | a-12=33 | | d-62=14 | | 5(2+1,5x)=24+0,5x | | 4=k6 | | 1,650,000+2⋅00x=1,500,000+2.50x | | 10-(3x-5)+13x=17x-(1+2x)+4 | | 7x+30+3x+50=180 | | 0,2-2(x-1)=0,4x | | 0,2-2(x-1)=0,14x | | (4x)+(x+2x+40°)=180° | | 120-x=70 | | 7x^2+64x+240=0 | | x^2+10x=18x-15 | | x+1/3+x-2/2=6 | | 2(x-1)=10x-42 | | 2x+(3x+5)=505 | | 2(15+x)=-4 | | (2x-13)+(x+22)=180 | | 2.6=m-5.8 | | -1.8=m+1.1 | | 20-2x=22.5 | | 7.2=m+8.7 | | 7.2=m-1.1 | | 4.9=m+3.4 | | y^=169 | | -2.5=m-4.8 | | 4.2=m-3.8 | | (2y-16)+y=40 |