If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-15=0
a = 2; b = 4; c = -15;
Δ = b2-4ac
Δ = 42-4·2·(-15)
Δ = 136
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{136}=\sqrt{4*34}=\sqrt{4}*\sqrt{34}=2\sqrt{34}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{34}}{2*2}=\frac{-4-2\sqrt{34}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{34}}{2*2}=\frac{-4+2\sqrt{34}}{4} $
| r^2-10r+25=-17 | | 2x^-5x-3=0 | | (x/3)-14=-2 | | 2a2-11a-6=0 | | 12-2(x^2+11)=16 | | G(2)=x-4x | | -98=2-4(1-6p) | | x^2,5=3 | | 3x-x=18-2x | | 10x-5=-8x+16 | | 3x^2-14=150 | | 3x+3x=7 | | (7+2x)^2=1 | | 2n+5=-5n+4 | | F(-3+x)=9-6x | | w^2+8w-0.5=19.5 | | (x+3)²=81 | | X/x+21=57 | | (x+3)2-18=6x | | 3n+5=36 | | 91+59+x=150 | | 32+35+x=180 | | 3x=3x+21 | | (x+3)*2-18=6x | | X/x+21=45 | | 100x²-9=0 | | -5y=10+2y-15 | | 3m+2m−1m=40 | | 3m+2m−m=40. | | 20^(3x)=72 | | 32x+26=96 | | 5x+45+7x=12(x+4) |