If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-16=0
a = 2; b = 4; c = -16;
Δ = b2-4ac
Δ = 42-4·2·(-16)
Δ = 144
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{144}=12$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-12}{2*2}=\frac{-16}{4} =-4 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+12}{2*2}=\frac{8}{4} =2 $
| 3(x+2-5)=8 | | 6(x=4)30 | | 2(v+9)=-2v-10 | | -9=3+3q | | -7u+22=-3(u-2) | | 5s−3s=2 | | 2.5-5=2w-5 | | 3=x/3-3 | | -5(x+5)=-7x-31 | | 8x−4=6−3x | | 0.5x-0.7x-1=7 | | 3=6-c/4 | | -5x-5=3(x+1) | | x*x*x=576 | | A-(b)=2 | | -2(w+1)=-8w-14 | | 5(v+4)-8v=2 | | -5=-3k-2 | | F(x)=2x+2x^2 | | -7=-5-z/3 | | a+(5+3a)=2a+7 | | -27=-6w+3(w-4) | | -1=-3+y/2 | | 2t2+5t+2=0 | | 2(v+4)-7v=3 | | (9+8i)2=17 | | 0.02x+0.72=0.8 | | -10=2w-6 | | 4(u-4)-7u=-1 | | Y=9x^2+54x+86 | | (8x+78)-2=(2x+114)-2 | | -22=-7=3j |