If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x-38=0
a = 2; b = 4; c = -38;
Δ = b2-4ac
Δ = 42-4·2·(-38)
Δ = 320
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{320}=\sqrt{64*5}=\sqrt{64}*\sqrt{5}=8\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-8\sqrt{5}}{2*2}=\frac{-4-8\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+8\sqrt{5}}{2*2}=\frac{-4+8\sqrt{5}}{4} $
| 2x+3x+60-40=180 | | x=(8-2x)(5-2x)x | | V(x)=(8-2x)(5-2x)x | | 4+5=(t-10) | | 10/v=17/7 | | 23*2n=128 | | 30+2x=30 | | 6x-7-4(2x-5)=-2x+13 | | 42=2xx1x | | 10x²+32x+6=0 | | 540-3x=x | | s²-6s-16=0 | | 6x–7–4(2x–5)=−2x+13 | | -7x-5=-7x-29 | | 6^2=x^2+2x^2-3^2 | | ⅓(2x-3)=7 | | 3m+10=27 | | 3x+0.6=-15 | | 8/n=12/30 | | X^2-8x-3X=0 | | 140+60x=1330 | | 7(e-3)=4+3(3e-5) | | 8(x+17)=-96 | | 0,4x+x=10000 | | 8–3(k+2)=2–3k | | 4x=3x-13 | | 7/2l+5=25 | | V(a)=(3-a)(16-4a)(a) | | 7(k-3)=3(k-5) | | 2t+3/2=14/2 | | 5(2x+2)=32 | | (x-5)^5=25 |