If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=3
We move all terms to the left:
2x^2+4x-(3)=0
a = 2; b = 4; c = -3;
Δ = b2-4ac
Δ = 42-4·2·(-3)
Δ = 40
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{40}=\sqrt{4*10}=\sqrt{4}*\sqrt{10}=2\sqrt{10}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-2\sqrt{10}}{2*2}=\frac{-4-2\sqrt{10}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+2\sqrt{10}}{2*2}=\frac{-4+2\sqrt{10}}{4} $
| 12-2h=h=21 | | 2(a-4)=(2a+8) | | 2y+19-135=180 | | (72x4)+(57x4)=500 | | ?x+20+3x=8x+10 | | 31.25-0.03g=29.95g | | 8(x+5)=-5x+27 | | 16x+48=28x+48 | | 1=−4(x−1)+4 | | 3=2x^2+5 | | -5.5=-2.33+3.17k | | 9d+7=7d+3 | | 2w-1=9-3w | | 20000=15000*1,0275^y | | 10t-6t-3=17 | | Y=15000*1,0275^x | | 25y-10y+20=10y+105-10 | | 2x+5+5x-20=180 | | 8(2u-6)=7u+24 | | 5(y-2)=50 | | 0r+8=17 | | 6j=6j−1 | | -1.95=2.7n-3n | | 17|20=t+(-13|20) | | x/18=38/9 | | 6c=–8+7c | | x/18=38/ | | 10k-2k(k+3)=10 | | 7(x-6)=-14(x-2) | | 1=c3–2 | | -y-15=-87 | | 9x-10=468 |