If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=30
We move all terms to the left:
2x^2+4x-(30)=0
a = 2; b = 4; c = -30;
Δ = b2-4ac
Δ = 42-4·2·(-30)
Δ = 256
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{256}=16$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-16}{2*2}=\frac{-20}{4} =-5 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+16}{2*2}=\frac{12}{4} =3 $
| 6c=11=2c+59 | | 49=x^2+11x | | x+12=-x+2(x+6) | | -1(3-7)+5/3=2(x+9) | | 7e+1-2e=31 | | 5+u=-6 | | 10-4n=1+5n | | -16(x-1/2)(x+3)=0 | | 5x+x=85 | | 9x+3x+12=180 | | -56x^2-113x-56=0 | | 4x+16-2x=51 | | 6-4x=1-5x | | -4.3=8.5+u/8 | | 1,000=15x+450 | | 3(2+5a)-10=-22+7 | | -1=p+3/9 | | (10x-8)+(9x+18)=180 | | 6d+2d-1=63 | | 3+w/4=19 | | 245=175x | | 90+2x+3x=360 | | 7+3c=34 | | 12+x=499 | | 3|4x+11|=15 | | --52-3u=8 | | -22=-7+5w | | 17–8s=6–7s–6 | | 4=-3+b | | 6x-19+3x+3+x-2=180 | | -x÷3=10 | | 5n+6-3n=2 |