If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+4x=8
We move all terms to the left:
2x^2+4x-(8)=0
a = 2; b = 4; c = -8;
Δ = b2-4ac
Δ = 42-4·2·(-8)
Δ = 80
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{80}=\sqrt{16*5}=\sqrt{16}*\sqrt{5}=4\sqrt{5}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(4)-4\sqrt{5}}{2*2}=\frac{-4-4\sqrt{5}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(4)+4\sqrt{5}}{2*2}=\frac{-4+4\sqrt{5}}{4} $
| 2x+3=-1x+1 | | 10x+14+7x+11=180 | | 13–9(2x+3)=-4(5x+4)+2x | | 2x–11=–5x+7 | | 10x+14=7x+11 | | 5x^2+6x+8=24+6x | | 3a-12=2a+6= | | -6x-2=6x+9 | | 2x^2=x^2-9+x | | -87=-5(2x+5)-2 | | y/4=17/13 | | 2y+15=3y+7 | | 3x2-x=7x | | 5(-1y+-6)=-10 | | 8x-15=6x+2x= | | n^2+2n/3=4 | | -3u+2=-9 | | -16=-9n+16n+4 | | k+3(8k+3)=-91 | | 3(2x+1)-5(x-1)=0 | | 14.4/x=1.2 | | 2r+36/r=30 | | 24a-10a=-2(a-8a) | | (x+5)+(2x-7)=13 | | 8(1+5x)-2=-114 | | -5a-15=-35 | | 2r+32/r=30 | | 8(1+5x)-2=-144 | | 4x^2-5x=6x^2-x | | 2x-4(4+9x)=4(7x+8) | | 19=4e+7 | | -6-5u=3.75 |