If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5=41
We move all terms to the left:
2x^2+5-(41)=0
We add all the numbers together, and all the variables
2x^2-36=0
a = 2; b = 0; c = -36;
Δ = b2-4ac
Δ = 02-4·2·(-36)
Δ = 288
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{288}=\sqrt{144*2}=\sqrt{144}*\sqrt{2}=12\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{2}}{2*2}=\frac{0-12\sqrt{2}}{4} =-\frac{12\sqrt{2}}{4} =-3\sqrt{2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{2}}{2*2}=\frac{0+12\sqrt{2}}{4} =\frac{12\sqrt{2}}{4} =3\sqrt{2} $
| 7x=30−8x | | 43x+1,357x-61=28(50x+18 | | 2(15(4)+b(4)+15(b)=270 | | 9x+27=8x+66 | | t/3=6/1/2 | | 12+7(x-4)=14 | | 5x-(×+6)=10 | | (120x+80)+(140x+100)=100 | | -7x-1=-6x-9 | | 6(x-9)=2x+15 | | (x+4)^2+1=65 | | 4r=56 | | 15+5r=3r-r | | 15(x+6)=45 | | 2x^2+3=2x^2-4x+5 | | 3x+2+7x+8=90 | | x-34=25 | | 0.5d^2+d+4=0 | | x^2+32=27 | | 5x=(8x+10)/2 | | 3x^2-48x-480=0 | | 5x^2+x-496=0 | | -x2=-10 | | 6x^2−18x−60=0 | | 6x2−18x−60=0 | | 17-x^2=-3-x | | ((x+3)/(2x-3))=2 | | 3x+6=10x-81 | | 3s-10=-8+s | | X=60-5x | | 3x+1=x^2 | | (n-8)(n+4)=0 |