If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5=59
We move all terms to the left:
2x^2+5-(59)=0
We add all the numbers together, and all the variables
2x^2-54=0
a = 2; b = 0; c = -54;
Δ = b2-4ac
Δ = 02-4·2·(-54)
Δ = 432
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{432}=\sqrt{144*3}=\sqrt{144}*\sqrt{3}=12\sqrt{3}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-12\sqrt{3}}{2*2}=\frac{0-12\sqrt{3}}{4} =-\frac{12\sqrt{3}}{4} =-3\sqrt{3} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+12\sqrt{3}}{2*2}=\frac{0+12\sqrt{3}}{4} =\frac{12\sqrt{3}}{4} =3\sqrt{3} $
| 9x+54=10x-8x-40 | | 10^x=23 | | 3.3h=3.96 | | 3(x+1)=3x+ | | n-9.3=24 | | 42=3(7a-2)+3(a+8) | | 10.5=f-0.08 | | -74=5u | | -7x-9=6x-22 | | r-7.8=13.1 | | 3(-8a+1)-3(a+2)=-57 | | p+11.8=30 | | 9x+7363893987x=1 | | 8(p-3)-2(1-4p)=-42 | | 5x–10=7x | | 45.6=16.7+b | | -7(p+8)-5(7p-2)=38 | | 8+3x-6x=38 | | -3(x-2)=-6+3x | | 11-2x+8x+5=-18 | | -7=3x^2-7x | | 7(8a+4)=-29-a | | 12x-8x+4x+9+10-3x-7=-6x-2+8x-9x-7+11+4 | | 3p-6=8(4-2p) | | -6=5x^2+3x | | 7b+9=4(6b-2) | | -32+8v=5(2+7v)-6v | | 2(n+6)=33-n | | 16x^2+4x=(4x+2)(4x+2x) | | 5(10x-7)=-5(-9x+9) | | -276=6(6x-4) | | 9x^2-4-5=0 |