If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-10=0
a = 2; b = 5; c = -10;
Δ = b2-4ac
Δ = 52-4·2·(-10)
Δ = 105
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{105}}{2*2}=\frac{-5-\sqrt{105}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{105}}{2*2}=\frac{-5+\sqrt{105}}{4} $
| 4n-3=2n-7 | | (6x+4)-2=2(3x+1 | | -4x+2x=6+7x | | 16=2^n | | 5x-27-2x=3 | | (3x+14)+2=-2x-9 | | 11x-2=x+18 | | 1/2x+6=3+3/4x | | 11p+9p=20 | | 3(x-5)=-2(5-4x) | | 8t^2-9t-10=0 | | 5h-7=2(h+1)-3 | | 1/8(8x+5)=24 | | 5+3j=-2/3 | | 8–2u=2 | | (-3)(1/6x)-18=72 | | 13.3x–7=11–x | | 5x-8-2=7 | | 0.079•x=7.9 | | 6^3x=3^x+1 | | k-3/15=7 | | 10x+15=135 | | 3-x+7=-7 | | 5c+24=1c | | ¾k+⅜k=½ | | 3+8i)(3–8i)= | | x+46=90-x | | 10m=41m+45 | | 2x-4=76=180 | | 3x–10=5x+32 | | (27x+125.55)1.06=383.51 | | 2=u+6 |