If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-20=0
a = 2; b = 5; c = -20;
Δ = b2-4ac
Δ = 52-4·2·(-20)
Δ = 185
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{185}}{2*2}=\frac{-5-\sqrt{185}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{185}}{2*2}=\frac{-5+\sqrt{185}}{4} $
| 3^x=100,3^x+2= | | ℊ=(5a−2)+3ℊ(2a) | | 343^x+1=49^x+21 | | 2x+3.1=x+0.4 | | 13×2=9x+10 | | 15=w/6+5 | | 2(d+4)=22 | | 2.25(4x-1)=-2+10x+12 | | y^2-8y=-7 | | 38=5(2x-3)+3 | | 5f+10=8f | | -3x+28=-5x+32 | | -3x+18=4(4x-5) | | x-18=-6x+10 | | 5/8=f/(f+2) | | 2x+14=-4x+32 | | 3y+10=-4y-4 | | 3t-2/3-2t+3/4=3/5-5 | | -9x+25=-5x+6x | | 8a-4=6a+12 | | 3v-7=v+1 | | x÷12/0.2×3.6=2 | | y=14/3+2/3 | | 2a+35=180 | | -34=4(3x+1)+10 | | 5(5x-5)-6=-6 | | 1.2+1.5÷0.3x0.3=2.7 | | 3(b-5)=3(4b-6) | | 4/(2x-1)=-3/(x+1) | | 4/(2x-1)=-3/x+1 | | 2/5×p=60 | | 5/(x+1)=7/2x |