If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x-3=0
a = 2; b = 5; c = -3;
Δ = b2-4ac
Δ = 52-4·2·(-3)
Δ = 49
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{49}=7$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-7}{2*2}=\frac{-12}{4} =-3 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+7}{2*2}=\frac{2}{4} =1/2 $
| 1/3(9c36)=-9 | | 6-7(z+1)=-3(2-z) | | -1-1/2y=6 | | 8h-10=10 | | -9w+32=2(w-6) | | 3*x²-13=35 | | 12/13=60/n | | -9+9k=1+10k | | 12/13=60/nn= | | 5b=4b+2 | | -2-1/2y=6 | | -32=5(x-7)-8 | | 1/6(3(x-1)+12)=x | | 2x4=5 | | 4(m-2)=44/3 | | 27-x=(-42) | | 2(5)=4y=16 | | 3x+1=78 | | (-2g+7)+(g+11)=0 | | -32=5(x+7)-8x | | 5/7x-4=3/7x+2 | | 12+8x=-4(x-6) | | 3/x+4=6 | | 2(3)=4y=16 | | 1/2=2/3b+1/6b | | 3.4g+3=1.4g+7 | | 5x(83/4)=26/7 | | 0.75(4x+8)=0.5(2x-10) | | 3(-5x+8)=-96 | | 2(2)=4y=16 | | 5/2n-4=10/3n+3 | | 8(x-1)-8=3x+5(-3+x) |