If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=0
a = 2; b = 5; c = 0;
Δ = b2-4ac
Δ = 52-4·2·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-5}{2*2}=\frac{-10}{4} =-2+1/2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+5}{2*2}=\frac{0}{4} =0 $
| -7x-7(-2-11)=42 | | -7x7(-2-11)=42 | | −(1+7x)−6(−7−x)=36 | | 29.50=4s+4.66 | | 2(3x−4)=3x+1 | | 5+91x=39x,+53 | | 1.9+0.1r=0.6 | | 3x-8=3(x+9) | | 5=-16x^2+6x+22 | | 6x-4=9+x | | 4y+3(y-6)=-11 | | 9(b-4)-7b=5(3b-2 | | 17y^2+4y+3=0 | | q/3q+5+2q-5+2q-5=65 | | 4/21=44/d | | 6/16=x/47 | | 90=37.21+0.25x | | 8−8p=10−3p | | -10+2.5s=35 | | 12(3x-1)=9(3x+1)+33 | | 6(7x-5)^2=18 | | 4(x+5)=4.5x | | 0.15d=1 | | 0.15dd=1 | | X/6+x/12+x/7+5+x/2+4=x | | 2x –21 = x + 9 | | -3x+7=-4x-6 | | q+12–2(q–22)=0 | | -(x-1)=-4x-5-3x | | -16=x-14 | | 6/x=2/9 | | (-4,3)m=1 |