If it's not what You are looking for type in the equation solver your own equation and let us solve it.
2x^2+5x=2
We move all terms to the left:
2x^2+5x-(2)=0
a = 2; b = 5; c = -2;
Δ = b2-4ac
Δ = 52-4·2·(-2)
Δ = 41
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-\sqrt{41}}{2*2}=\frac{-5-\sqrt{41}}{4} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+\sqrt{41}}{2*2}=\frac{-5+\sqrt{41}}{4} $
| 4n-11=24 | | 0.5x+15=2.5x-5 | | 87+x=89 | | 1=6x+19 | | a/3+18=15 | | 99+x=99 | | 1/3w-2=-4 | | 32/72=4/n | | -5-6f=7f+8 | | 2x/3=5x+8 | | 1/2(6a)+6a+a=180 | | !/2(6a)+6a+a=180 | | c=3✖2 | | 27=t+2t= | | (7x+13)+127=180 | | 2t-5+2=-6-6t | | 20-5n=90 | | 1/5y=18 | | z+148/9=26 | | H(t)=-5t2+45t+50 | | −3(x−2)+5(2x+1)=−3 | | 6x-11=-2x+1 | | y12=144 | | 5=13-d= | | 6=m+2.4 | | 6-2y+4y=20 | | 3.−3(x−2)+5(2x+1)=−3 | | z-32=100 | | 2(x^2-2x)+20=180 | | 8(x-7)=-80 | | 4u-3=-2u | | n=√4n+5 |